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TOPICAL REVIEW — Machine learning in statistical physics

Inverse Ising techniques to infer underlying mechanisms from data*
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As a problem in data science the inverse Ising (or Potts) problem is to infer the parameters of a Gibbs–Boltzmann
distributions of an Ising (or Potts) model from samples drawn from that distribution. The algorithmic and computational
interest stems from the fact that this inference task cannot be carried out efficiently by the maximum likelihood criterion,
since the normalizing constant of the distribution (the partition function) cannot be calculated exactly and efficiently. The
practical interest on the other hand flows from several outstanding applications, of which the most well known has been
predicting spatial contacts in protein structures from tables of homologous protein sequences. Most applications to date
have been to data that has been produced by a dynamical process which, as far as it is known, cannot be expected to satisfy
detailed balance. There is therefore no a priori reason to expect the distribution to be of the Gibbs–Boltzmann type, and no
a priori reason to expect that inverse Ising (or Potts) techniques should yield useful information. In this review we discuss
two types of problems where progress nevertheless can be made. We find that depending on model parameters there are
phases where, in fact, the distribution is close to Gibbs–Boltzmann distribution, a non-equilibrium nature of the under-lying
dynamics notwithstanding. We also discuss the relation between inferred Ising model parameters and parameters of the
underlying dynamics.
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1. Introduction
The Gibbs–Boltzmann distribution of the Ising model on

L spin (For later reference we prefer to refer to the number of
spins in the model with the letter L, for “loci”. The more cus-
tomary letter N will later be reserved to the number of samples
drawn from the distribution, following a convention using in
statistics) is

P(𝑠) =
exp
(
−β
(
∑i θisi +∑i< j Ji jsis j

))
Z

, (1)

where β is the inverse temperature, and Z is the partition func-
tion, defined as

Z = ∑
𝑠

exp
(
−β

(
∑

i
θisi +∑

i< j
Ji jsis j

))
. (2)

The parameters of the model are L external fields {θi}L
i=1 and

L(L−1)
2 coupling constants or interactions {Ji j}i< j. The Gibbs–

Boltzmann distribution of a Potts model is defined in a similar
way, except that each variable can take q values (q = 2 for
the Ising model) and the model parameters are vectors and

matrices (by reparametrization invariance the number of in-
dependent paramaters is respectively q− 1 for the vector and
(q− 1)2 for the matrix, which for q = 2 gives only one pa-
rameter of each type as in Eq. (1)) ({θ

(α)
i } for 1 ≤ α ≤ q and

{J(α,α ′)
i j } for 1 ≤ α,α ′ ≤ q).

From the viewpoint of physics, Eq. (1) gives the equi-
librium distribution at inverse temperature β corresponding
to the Ising energy function (or Hamiltonian).[1–3] The tradi-
tional Ising problem of statistical mechanics is to determine
properties of the distribution P(𝑠) from the model parame-
ters {θi,Ji j}. The probability distribution P(𝑠), or ensem-
ble, will be reflected in samples drawn independently from
that distribution. Combining the two steps of estimating the
ensemble and sampling from the distribution, the direct Ising
problem can be defined as the problem of estimating an empir-
ical probability distribution over samples from model param-
eters. The inverse Ising problem is then the opposite problem
of inferring model parameters from samples drawn from the
distribution.[4–6]

To stress the inverse nature of the problem it is useful to
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introduce some notation from statistics. The class of distri-
butions (1), with values of the external fields and interactions
in some set, is called an exponential family (exponential be-
cause the parameters all appear in the exponent, and family
because a set of parameters are considered). The inverse Ising
problem is accordingly called parameter inference in an ex-
ponential family.[7] The most basic way to infer parameters
from independent samples from one and the same probability
distribution is maximum likelihood (ML). For computational
reasons, ML is often formulated in logarithmic coordinates as
maximum log-likelihood. Given N independent samples from
Eq. (1), the maximum log-likelihood amounts to the convex
optimization problem,

{θ
*
i ,J

*
i j}ML = argmax

[
−∑

i
θi ⟨si⟩

−∑
i< j

Ji j
〈
sis j
〉
− 1

β
logZ

]
, (3)

where ⟨si⟩ and
〈
sis j
〉

are the empirical averages computed
from the samples. The star on the parameters on the left-hand
side mark that these are inferred, and the superscript ML in-
dicates the inference method. Searching the only reason for
Eq. (3) is a difficult task because the forward problem of com-
puting Z from the parameters is difficult. The effect of the pa-
rameter β cannot be separated from an overall scale of {θ *

i }
and {J*i j}, and therefore only appears in Eq. (3) as a propor-

tionality of the log-partition function logZ
(

β ,{θ *
i },{J*i j}

)
.

From now on we will, when not specified otherwise, set β

equal to 1.
A fundamental fact of statistical inference, which holds

for all exponential families, is that maximum likelihood does
not need all the data. Indeed, in Eq. (3) data only appear as em-
pirical averages. That is, if we have a table of N independent
samples this means NL data items, but Eq. (3) only depends
on L(L+1)

2 numbers computed from the data. Those numbers
(here means and correlations) are called sufficient statistics for
inference in an exponential family.[8,9] A second fundamental
fact is that maximum likelihood inference gives the same re-
sult as maximizing Shannon entropy conditioned by the suffi-
cient statistics. From the physical point of view this follows
directly from Eq. (1) being an equilibrium distribution, which
minimizes free energy. Maximizing Shannon entropy condi-
tioned by some chosen set of empirical averages is called the
maximum-entropy[10–12] or max-entropy approach to statisti-
cal inference. By the above such a set of empirical averages
is in one-to-one relation with a set of parameters in an expo-
nential family for which they are sufficient statistics. This re-
lation between exponential parameters and empirical averages
is called conjugacy, or, in Information Geometry,[13,14] a du-
ality. The max-entropy approach with a given set of empirical

averages is equivalent to maximum likelihood inference in an
exponential family with the conjugate parameters.

In physics, Eq. (1) appears as a (canonical) equilibrium
distribution of a system interacting with a heat bath. Let two
configurations of the system be 𝑠 and 𝑠′, and let the probability
of the system to make the change from 𝑠 to 𝑠′ per unit time be
W𝑠,𝑠′ . Then equilibrium will be reached if the transition rates
satisfy the detailed balance conditions[15]

P(𝑠)W𝑠,𝑠′ = P(𝑠′)W𝑠′,𝑠. (4)

In equilibrium, transitions from 𝑠 to 𝑠′ and 𝑠 to 𝑠′ are equally
likely. As a consequence there cannot be chains of states such
that cyclic transitions in one direction (𝑠1 → 𝑠2 → ···→ 𝑠k →
𝑠1) is more likely than in the opposite direction (𝑠1 → 𝑠k →
·· · → 𝑠2 → 𝑠1). Chemistry and Biology have many exam-
ples of such cycles appear, from chemical oscillations of the
Belouzov–Zhabotinsky type to the cell cycle and circadian
rythms.[16,17] This immediately says that not all dynamics on
discrete state spaces can satisfy detailed balance, and so can-
not be expected to have stationary distributions like Eq. (1).

If we focus on single-spin flips and P(𝑠) in Eq. (1) we
can write the detailed balance conditions as a relation between
spin flip rates ri(+,𝑠∖i) and ri(−,𝑠∖i),

ri(−,𝑠∖i) = ri(+,𝑠∖i)e
−2βθi−2β ∑ j Ji js j , (5)

where ri(−) is the rate of spin i to flip from down to up, and
ri(+) is the rate from up to down. Both of them depend on the
configurations of all the other spins, written as 𝑠∖i. Alterna-
tively we can rewrite Eq. (5) as

ri(𝑠) = γi(𝑠∖i)e
−β∆iE(𝑠), (6)

where ri(𝑠) is the rate of flipping spin i in configuration 𝑠,
∆iE(𝑠) is the energy change when doing so, and γi(𝑠∖i) is an
overall rate which does not depend on the value of spin i. Dif-
ferent Monte Carlo procedures (or Markov chain Monte Carlo
(MCMC) algorithms) differ by this overall rate γi(𝑠∖i).

To give an example of a spin-flip dynamics which does
not satisfy detailed balance we point to the class of focused al-
gorithms for constraint satisfaction problems, invented by Pa-
padimitriou now three decades ago.[18–26] In such algorithms
one imagines that the energy function is a sum of local terms
all of which are one or zero. A solution is a configuration
where all the energy terms are zero (zero-energy ground state).
A focused algorithm is one where the rate of flipping spin i is
zero unless at least one of the constraints depending on i is un-
satisfied, but otherwise the dynamics remains partly random.
It is clear that for such dynamics one can flip into a satisfied
state, but once there the dynamics stops; one cannot flip out
(the first condition of focusing can be satisfied in the equilib-
rium algorithm (6) by taking β to infinity (zero temperature);
then the algorithm is a deterministic greedy search, and is no
longer random). It is well known that focused algorithms such
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as “walksat” outperform equilibrium algorithms in many im-
portant applications.[19,24]

Let us now go back to the problem of inferring the pa-
rameters of the Ising model in Eq. (1) where the data has been
generated by some process which may or may not satisfy de-
tailed balance. The inference procedure is at this point treated
as a black-box. What does this mean? Does it even make
sense? When does it make sense?

In equilibrium statistical mechanics the answer is clear
and simple: the process will make sense if the data is gener-
ated by a process in detailed balance with an energy function
in the same exponential family, and in a phase where sampling
is possible. The first condition simply means that if the data
is generated from a process with, say, third-order interactions
between the spins, those interactions will not be recovered
from inferring only first-order and second-order interactions.
The second conditions means that parameters have to be such
that the dynamics explores enough configurations that there
is enough information to infer from. A trivial example when
this is not the case is zero temperature where the configura-
tion goes to a local minimum of the energy, and then does not
change. A more subtle example is a spin glass phase where for
large but not infinite β only part of the Gibbs distribution (1)
will be sampled by an MCMC algorithm unless the simula-
tion time is exponentially large in system size.[29] Inference
from naturally generated samples, which are “stuck in one val-
ley”, has long been known to be impossible by the class of in-
verse Ising methods surveyed here.[27] For specific problems
and with more tailored methods such a task is sometimes nev-
ertheless possible.[28] Inference from samples that are drawn
uniformly from such a distribution has on the other hand been
shown to be possible, and even easy.[29] Such uniform samples
however have to be generated by methods that either needs a
large computational effort (long simulation time), or one needs
to restart the simulation many times with new random initial
values, which corresponds to real data from many separate
time series.

Once we step out of the realm of equilibrium dynamics
we are much more in the dark. For the specific example of
symmetric simple exclusion process (SSEP) it is known that
the stationary distribution, i.e. the equivalent of Eq. (1), con-
tains all interactions of all orders,[30,31] meaning all single-
spin and pair-wise terms as in Eq. (1), all three-spin interac-
tions, and so on. This is so even though the SSEP dynam-
ics is entirely specified by nearest-neighbor pairwise exclu-
sion, and the non-equilibrium aspects are only the boundary
conditions, particle exchanges with reservoirs. When the dy-
namics can be described as depending on energy changes with
some non-equilibrium element such as focusing at every step
(“bulk driven non-equilibrium process”), the possibilities for
the stationary distributions are wider still. The outcome of

an inverse Ising procedure applied to such data may therefore
be completely unrelated to the parameters of the mechanisms
that gave rise to the data. The computational complexity and
number of data required to infer the parameters of any kind of
non-equilibrium steady state from snapshots has been shown
to be daunting.[32–34] Nevertheless, this is the setting of most
successful and interesting applications of inverse Ising tech-
niques to date.[35,36] Why is this?

In this review we will present two cases where the above
problem can be analyzed and/or studied in simulations. The
first case is kinetic Ising models with possibly different val-
ues of pairwise parameters Ji j and J ji. When Ji j = J ji (sym-
metric kinetic Ising models) this is nothing by a Monte Carlo
procedure to compute the distribution P(𝑠) in Eq. (1). Mod-
els where Ji j ̸= J ji (asymmetric kinetic Ising models) have
however also been widely studied, e.g. as model systems in
neuroscience.[27,37,38] The kinetic Ising models hence interpo-
late between equilibrium and non-equilibrium systems. They
also illustrate that more efficient inference procedures than in-
verse Ising are available if one can use a time series and not
only independent samples from a stationary distribution.

The second case are slightly more involved spin dynam-
ics that model evolution under mutations, Darwinian selec-
tion (fitness), finite-N effects (genetic drift) and recombina-
tion (sex). We will here see that inverse Ising works in certain
ranges of parameters describing the relative strengths of mu-
tations, fitness and sex, but not in others. We will also see that
the relation is not trivial; non-trivial theory is needed to trans-
late the results from inverse Ising to inferred fitness that can
be compared to model parameters.

This review is organized as follows. In Section 2, we
summarize for completeness some inverse Ising techniques.
This topic is already covered by excellent reviews to which we
refer for more details and a wider palette of techniques. In Sec-
tion 3 we introduce the kinetic Ising problem in its symmetric
and asymmetric form, and present characteristic results, and
in Section 4, we present two applications of those techniques
taken from earlier work by one of us (HLZ). Section 5 presents
on the other hand a class of problems in population genetics,
and Section 6 contains an outlook and discussion.

2. Techniques for inverse Ising
The inverse Ising problem has been studied under several

different names, such as statistical inference in exponential
families (as above), Boltzmann machines, maximum-entropy
modeling, direct coupling analysis (DCA), logistic regression
techniques, and so on. For small enough system (small enough
L) maximum likelihood in Eq. (3) is computationally feasible,
for instance by the iterative method also known as Boltzmann
machine.[39] The idea is that very widely used method is to ad-
just the parameters in the exponential family to make empiri-
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cal averages and ensemble averages of the conjugate sufficient
statistics agree.

For large L, maximum likelihood (ML) is not computa-
tionally efficient, meaning that it requires an effort exponen-
tially increasing in L. In other words, for a given fixed L, if ML
is computationally feasible depends on time and the develop-
ment of computer hardware. Nevertheless, for many applica-
tions that have been of interest, either ML has not been feasi-
ble, or other inference schemes have given comparable results
with less effort. In any case, it has been an interesting theo-
retical challenge to design and analyze schemes that make a
different trade-off between accuracy and computational speed
than ML.

The state of the art of inverse Ising was recently exten-
sively reviewed in Ref. [6], and we will here only provide a
background for the later sections. A first type of inference
methods attempts to circumvent the computational challenge
of ML by estimating the partition function Z efficiently. Such
methods are collectively known as mean-field inference, be-
cause they rely on mean-field techniques. The by far most
common version of mean-field inference relies on a variational
ansatz in terms of magnetizations, which yields the physical
mean-field equations of the Ising model,

mi = tanh

(
hi +∑

j
Ji jm j

)
. (7)

In this equation only mi is taken from the data, and there are
only L equations. By using also linear-response

ci j =
〈
sis j
〉
−⟨si⟩

〈
s j
〉
=

∂mi

∂h j
(8)

one finds the naive mean-field inference formula[40]

J*,nMF
i j =−

(
c−1)

i j . (9)

The above expression is computationally quite convenient as
it reduces a complicated inference to matrix inversion. One
may note that Eq. (9) is the same formula as inferring the
interaction matrix of a Gaussian model (precision matrix in
information theory) from data. It is an elementary property
of multidimensional centered Gaussian distributions that they
can be written as P(x) = 1

N exp
(
− 1

2 xC−1x
)
, where C is the co-

variance matrix. The precision matrix (the model parameters)
can therefore be inferred as the inverse matrix of C (the data).
The difference is that for an Ising model, Eq. (9) is only ap-
proximate, and is not always with good accuracy; for the SK
model (to be discussed below) it holds for instance at high-
temperature (weak interactions), but not at low temperature. If
needed one can combine Eqs. (7) and (9) to estimate also the
external fields, i.e.,

h*,nMF
i = tanh−1 mi −∑

j
J*,nMF

i j m j. (10)

More advanced mean-field methods than naive mean-field
are obtained by starting from more advanced approximations
than Eq. (7). The best-known of these is TAP (Thouless–
Anderson–Palmer)[41] which starts from

mi = tanh

(
hi +∑

j
Ji jm j −mi ∑

j
J2

i j(1−m2
j)

)
. (11)

Using linear response then gives J*i j as the solution of a
quadratic equation

J*,TAP
i j +2mim j

(
J*,TAP

i j

)2
=−

(
c−1)

i j . (12)

A general feature of inference methods of this type is that
in the variational ansatz the data is only taken into account
through the single-variables marginals, i.e. through the mag-
netizations. It is only linear-response Eq. (8), which is an ex-
act property of the full Ising model, but not of the variational
ansatz, that two-variable marginal are brought back into play.

Another type of mean-field inference equation attempts to
find the Ising model which best fits the data. The variational
parameters are then magnetizations (mi) and correlations (ci j),
conjugate to model parameters hi and Ji j. This approach was
first developed as an iterative procedure called “susceptibility
propagation”[42,43] and only later shown to also yield equa-
tions like Eqs. (9) and (12), where ratios of hyperbolic func-
tions appear on the left-hand side, but the right-hand side is
still just the inverse matrix of correlations.[44] An alternative
derivation of this elegant approach can be found in Ref. [6],
which also contains a survey of many more methods that have
been introduced and tested in the literature.

A different type of inference gives up on the ambition to
approximate the partition function, and hence the full prob-
ability distribution P(𝑠). Instead, one tries to infer the pa-
rameters from some other property which can be efficiently
computed. The most widely used such method is maxi-
mum pseudo-likelihood[45] or pseudo-likelihood maximiza-
tion (PLM). This starts from the conditional probability of the
Ising model

P(si|𝑠∖i) =
exp
(
−β
(
θisi +∑ j Ji jsis j

))
∑s′=±1 exp

(
−β
(
θis′+∑ j Ji js′s j

)) . (13)

In contrast to Eq. (1) there is now no longer any difficult to
compute normalization factor. The denominator in Eq. (13) is
the normalization of a distribution over only one Ising spin,
and hence has only two terms. When treated in the same way
as ML Eq. (3), Eq. (13) leads to L inference problems, one for
each spin i(

θ
*
i ,J

*
i j
)PML,i

= argmax

[
−θi ⟨si⟩−∑

j
Ji j
〈
sis j
〉
− 1

β
⟨logζi⟩

]
, (14)
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where ζi is the sum in the denominator in Eq. (13). The left-
hand side emphasizes that this is inference “as seen from spin
i” (by maximizing conditional probability of spin i). To get
the final answer one needs to combine J*,PML,i

i j and J*,PML, j
i j ,

typically by taking their average.
In the limit of infinite data, PLM will almost surely find

the same parameters as ML, a property referred to as statistical
consistency (The formal definition of statistical consistency is
that as the number of samples goes to infinity, the argmin of
the estimator converges in probability to the right answer. this
holds for ML and PLM and some other inference methods to
be discussed below, but does not hold for mean-field inference
methods. In the limit of infinite data the sample averages used
in mean-field will always surely be the same as ensemble av-
erages, but the recovered parameters will not be the true ones
because physical mean-field is in itself approximate. For a
discussion, see e.g.[6] and references cited therein.). In appli-
cations PLM has often been found to outperform both naive
and advanced mean-field inference.[6] Why that is so cannot
be said to be completely known, since the number of samples
in real data sets is finite. The error of mean-field inference
compared to PLM in the infinite sample limit (lack of statisti-
cal consistency) could therefore be compensated by the error
in PLM when used on a finite number of samples. Empirically
this has mostly not been found to be the case, but that may
partially be a consequence of the kinds of data sets that have
been considered in the literature.

2.1. Undersampling, regularization, prior information
and evaluation criteria

High-dimensional statistics is the branch of modern
statistics where the number of samples (N) is assumed to grow
together with or slower than the number of parameters (here
L(L+1)

2 ). Common sense says that if there are fewer samples
than parameters and no other information, then the parameters
cannot be fully determined by the data. This rule-of-thumb has
to be applied with care, because often there is other informa-
tion, used explicitly or implicitly; we will refer to a few such
cases below.

Nevertheless, the rule-of-thumb points to something im-
portant, namely that in the important application of inverse
Potts methods to contact prediction in protein structures,[46,47]

the number of parameters (for 20 types of amino acids in a
protein of 100 residues) is typically about 202 · 1002, which
is four million, while the number of samples is rarely more
than a hundred thousand. All inference methods outlined
above are therefore in this application used in regimes where
they are under-sampled, and so need to be regularized. For
naive mean-field inference a regularization by pseudo-counts
(adding fictitious uniformly distributed samples) was used in
Refs. [46,47], while an L1-regularization was used in Ref. [48],

and an L2-regularization in Ref. [49]. For PLM similarly L2-
regularization was used in Refs. [50–52].

An important aspect of all inference is what is the family
from which one tries to infer parameters. This can be given in
a Bayesian interpretation as an a priori distribution of parame-
ters; the more one knows in that direction, the better the infer-
ence can be. Many regularizers can be seen as logarithms of
Bayesian prior distributions such that the analogy also works
the other way: regularized inference is equivalent to inference
with a prior (exponential of the regularizer), and can therefore
work better because it uses more information. For instance, if
all parameters are supposed to be either zero or bounded away
from zero by some lower threshold value, and if the ones that
are non-zero are sparse, then the authors of Ref. [53] showed
that L1-regularized PLM can find the graph structure using rel-
atively few samples, given certain assumption that were later
shown to be restrictive.[54] Nevertheless, using and analyz-
ing thresholding also in the retained predictions, the authors
of Ref. [55] were able to show that L1-regularized PLM can
indeed find the graph structure using order of logL samples
(the same authors also showed that L1-regularized PLM with
thresholding, as used in the plmDCA software of Ref. [52] can
recover parameters in L2 norm using order of logL samples).

A second and equally important aspect is the evaluation
criteria. The criterion in Ref. [53] is graphical: the objective
is to infer properties of the model (the non-zero interactions)
which can be represented as a graph. It is obvious that infer-
ence under this criterion will be difficult without a gap in the
distribution of interaction parameters away from zero. Infor-
mation theory imposes limits on the smallest couplings that
can be retrieved from the finite amount of data;[55,56] given
finite data it is simply not possible to distinguish a parame-
ter which is strictly zero from one which is only very small.
Another type of criterion is metrical, most often the squared
differences of the actual and inferred parameter values.[6,27]

Yet another is probabilistic by determining some difference
between the two probability distributions as in Eq. (1), one
with the actual parameters and one with the inferred param-
eters. Two examples of probabilistic criteria are Kullback–
Leibler divergence and variational distance. An advantage of
probabilistic criteria is that they focus on typical differences of
samples, and not on parameter differences which may (some-
times) not matter so much as to the samples observed. How-
ever, as this requires sampling from the distributions, it is also
a disadvantage.

Important results have been obtained as to how many
samples are required for successful inference when both the
a priori distributions and and the criteria are varied, first in
Ref. [53] under strong assumptions, and more recently in
Refs. [55,57]. These two latter papers also introduced a differ-
ent objective function, interaction screening objective (ISO),
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that has dependence on the same local quantities as pseudo-
likelihood, and which provably outperforms PLM in terms of
expected error for the given number of samples, providing near
sample-optimal guarantee. ISO has also more recently been
generalized to learn Ising models in the presence of samples
corrupted by independent noise,[58] and to the case of Potts
models and beyond pairwise interactions.[59]

In practice and in many successful applications to real
data, criteria have been of the type “correctly recovering k
largest interactions”, colloquially known as “top-k”. Perfor-
mance under such criteria is straight-forward to analyze em-
pirically when there is a known answer; one simply compiles
two lists of k largest parameters and what interactions they
refer to, and then compares the two lists. For instance, one
can check what fraction of k largest inferred interactions can
also be found among the k largest actual interactions, which
is known as k-true positive rate, or TPR(k). In the applica-
tion of inverse Potts methods to contact prediction in protein
structures,[46,47] k has commonly been taken to be around 100.
The inequality that the number of retained parameters is less
than the number of samples has hence been respected, with a
large margin. The theoretical analysis of performance under
this type of criterion is however more involved, as the distri-
bution of the largest values of a random background is an ex-
treme deviations problem. One approach is to leverage an L∞

norm guarantee,[55,59] for another using large deviation theory,
see Refs. [60,61].

2.2. Time series and alltime inverse Ising techniques

In Section 3 we will consider inference from data gener-
ated by a kinetic Ising model, and in Section 4 we will con-
sider applications of this technique to data in Neuroscience
and from Finance. The main message of these sections will
be that if you have time series data, it will be usually better to
do inference on the time-labeled data. As we will show, even
when the dynamics is of the type (6), respects detailed bal-
ance, and has stationary distribution (1), it can be faster and
easier to infer Ji j from the dynamical law than by inverse Ising
techniques.

Nevertheless, even if the data was generated in a dynamic
process, we do not always have time series data. In Sec-
tions 5.1 and 5.4 we will consider models of evolution, in-
tended as stylized descriptions of the kind of genetic/protein
data on which inverse Ising (Potts) techniques have been
applied successfully.[36,46,47,62] The underlying dynamics is
then of the type of Ntot individuals (genomes/genetic signa-
tures/proteins) of size (genomic length) L evolving for a time
T , while the data is on N individuals (genomes/genetic signa-
tures/proteins) sampled at one time (or at uneven times so that
the time information is hard to use, or the time at which they
were sampled is unknown, the cases may differ depending on

the data set).
Averages at any given time will have errors which go

down as (Ntot)
− 1

2 , typically a very small number for real data
sets, but not necessarily very small in a simulation. For the
evaluation of how simulations match theory it is therefore of
interest to also consider as input data to inverse Ising variants
of naive mean-field Eq. (9) and PLM Eq. (14), where the av-
erages are computed both over samples and over time. We
refer to these variants as alltime versions of the respective al-
gorithms.

3. A model: kinetic asynchronous Ising dynam-
ics
A standard approach to sample the equilibrium Ising

model is Glauber dynamics.[63,64] On the level of probability
distributions it is formulated as master equations

d
dt

p(s1, . . . ,sL; t) = ∑
i

ωi(−si)p(s1, . . . ,−si, . . . ,sL; t)

−∑
i

ωi(si)p(𝑠; t), (15)

where ωi(si) is the flipping rate, i.e., the probability for the
state of ith spin to changes from si to −si per unit time while
the other spins are momentarily unchanged. Equation (15)
shows that the configuration s1, . . . ,sL is destroyed by a flip
of any spin si (a loss term), but it can also be created by the
flip from any configuration with the form s1, . . .− si, . . . ,sL (a
gain term). The flipping rate of spin i is

ωi(𝑠) =
γ

1+ exp
[
2si
(
θi +∑ j Ji js j

)]
=

γ

2

[
1− si tanh

(
θi +∑

j
Ji js j

)]
. (16)

The parameter γ is an overall rate which in Glauber dynamics
is assumed to be the same for all spins. The left-hand side de-
pends on the whole configuration 𝑠 because the values of all
spins enter on the right-hand side. The inverse temperature β

is here set to be 1; as noted above it can be absorbed in the
parameters.

For small enough systems (small L), Eq. (15) can be sim-
ulated by solving 2L linear ordinary differential equations. For
larger L, Eq. (15) can only be simulated by Monte Carlo pro-
cedure. This means that one considers N separate spin con-
figurations 𝑠1, . . . ,𝑠N , each of which is evolved in time. The
empirical probability distribution

Pe(𝑠, t) =
1
N

N

∑
s=1

1𝑠,𝑠s(t) (17)

is then an approximation of P(𝑠, t) in Eq. (15). We note (triv-
ially) that for large systems, Pe(𝑠, t) will typically be either
zero or 1

N ; the chance that among N separate spin configu-
rations 𝑠1, . . . ,𝑠N two are exactly equal will be very small.
Pe(𝑠, t) hence approximates P(𝑠, t) as to certain summary
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statistics such as single-spin averages (magnetizations), but
typically cannot approximate P(𝑠, t) very well as to the val-
ues for individual configurations.

For simplicity of presentation we will here focus on the
time-homogeneous case in which all parameters are time in-
dependent. Distributions will then eventually relax to a sta-
tionary state, and we will assume that this process has taken
place. Inference can then by carried out by treating samples at
different times independently, i.e., by the type of alltime algo-
rithms discussed in Section 2.2. For the rest of this section, N
(the number of different time series) will hence be 1. Indeed,
as in the Monte Carlo procedure the different samples do not
interact, one can limit oneself to just one time series, as long
as one is interested in properties of the statistically stationary
state reached at large times.

The dynamics of a configuration 𝑠(t) is governed by the
same rates as in Eq. (15). In the Monte Carlo simulation
scheme it is convenient to consider spin i as responding to an
effective field from the external field θi and the interactions
from all the other spins. This effective field is time-dependent
because the configurations of the other spins change in time,
viz.

Hi(t) = ∑
j

Ji js j(t)+θi, (18)

and the instantaneous rates are then

ωi(𝑠, t) =
γ

2
[1− si(t) tanh(Hi(t))] . (19)

One approach to simulation is to introduce a small time
step increment δ t and to flip each spin at each time with prob-
ability ωi(𝑠, t). For this scheme to simulate Eq. (15) one must
take δ t so small that the chance of any other spin to flip in
the same short time interval is negligible. This scheme can be
said to rely on L · t/δ t random variables, one for the decision
whether or not to flip each spin in each time interval. Since
on average less than one spin will flip in each time interval the
probabilities of these variables have to be very biased towards
not flipping.

A computationally more efficient scheme is to first con-
sider the rate of the event of flipping any spin. That is,

ωTOT(𝑠, t) = ∑
i

ωi(𝑠, t). (20)

As long as no spin flips this overall rate does not change. The
waiting time until any spin has flipped is therefore an expo-
nentially distributed random variable with rate ωTOT, and the
chance that it was spin i that flipped is ωi/ωTOT. The dynam-
ics can then be simulated in discrete steps starting from a con-
figuration 𝑠0 at t0 such that flips take place at times t1, t2, . . .
Initially the rates are {ωi(𝑠0)}, and t1 − t0 is an exponentially
distributed random variable with rate ωTOT(𝑠0) = ∑i ωi(𝑠0).

The first spin to flip will be the j-th spin with probability
ω j(𝑠0)/ωTOT(𝑠0), and after the flip all rates are updated to
{ωi(𝑠1)}, and the process is repeated. This algorithm is called
the Gillespie algorithm,[65] and relies on L · t/∆t random vari-
ables where ∆t is some characteristic time interval between the
flips. At the price of a slightly more complicated structure it
is thus faster than the first algorithm by a ratio ∆t/δ t. Further-
more this method is exact; ∆t is a property of the dynamics
and not of the simulation scheme.

A third approach is to update at each step a spin i picked
uniformly at random with probability γδ t. After such an up-
date, which may or may not change the spin value, the new
value will be

si(t +δ t) =
{
+1 with probability 1/{1+ exp[−2βHi(t)]},
−1 with probability 1/{1+ exp[2βHi(t)]}.

From this we can evaluate the rate of flipping of spin i per unit
time to be{

γ/{1+ exp[2βHi(t)]}, when si(t) = 1,
γ/{1+ exp[−2βHi(t)]}, when si(t) =−1.

which gives the same rate as in Eq. (16). Since two random
numbers are called for each spin at each time interval, this
scheme can be said to rely on 2L · t/δ t random variables.

3.1. Symmetric and asymmetric Sherrington–Kirkpatrick
(SK) models

As illustrative examples we will now look at symmetric
and asymmetric SK models,[66] which are defined as follows.
First we introduce Ji j with no restriction on i and j. Such a
matrix can be split into its symmetric and asymmetric parts.
We write

Ji j = Js
i j + kJas

i j , k ≥ 0, (21)

where Js
i j and Jas

i j are symmetric and asymmetric interaction,
respectively:

Js
i j = Js

ji,

Jas
i j = −Jas

ji . (22)

The parameter k in Eq. (21) measures the asymmetric degree
of the interactions Ji j. With k = 0, Ji j’s are a fully symmet-
ric model the stationary distribution of which is Eq. (1). Any
k ̸= 0 means that the Ji j and J ji are not the same, and we have
a non-equilibrium dynamics. The SK kinetic model, extended
to non-equilibrium,[67] means to take both the symmetric and
the asymmetric couplings to be identically and independently
Gaussian distributed random variables with means zero and
variances

⟨Js
i j

2⟩= ⟨Jas
i j

2⟩= g2

N
1

1+ k2 . (23)
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This parametrization is chosen such that the total coupling ma-
trix J follows a Gaussian distribution

p(Ji j)∝ exp

(
−
(Ji j −µ)2

2σ2

)
(24)

with means µ = 0 and variance σ2 = g2/N independently of
k.

The interactions Ji j define spin update rates (16) or (19).
To see that asymmetric interactions do not lead to Gibbs distri-
butions (1), it is useful to temporarily change the parametriza-
tion so that there are three only non-zero interactions Ji j =

J jk = Jki = J, all large. All other Ji j are zero, and all θi are
also zero. Assume that initially the three spins si, s j and sk are
all up, i.e., +++. They will then have the same (small) flip
rate γ/

(
1+ eJ

)
, and one of them will flip first, let that be spin

i, so that the next state is −++. After this has happened the
(much larger) rate for either i to flip back or for k to flip will be
γ/
(
1+ e−J

)
. A flip of spin i will hence almost surely either

go back to the starting state +++ after two flips, or lead to
the configuration −+−. This second state will in turn almost
surely lead to ++− or −−−. The first of these is a shift of
the state after the first flip to the left, and by circular permuta-
tion symmetry it must be more likely that the shifts continue
in that direction rather than to the right. The second is on the
other hand obviously the mirror image of the starting state, and
all rates are again low. Flipping out of −−− would lead to
+−−, which would give +−+ and then +++ or −−+,
which is also a shift to the left. A dynamics which has some
similarities to the above where motion surely goes only in one
direction is the basis of Dijkstra’s famous self-stabilizing sys-
tem under distributed control,[68] for a physics perspective, see
Ref. [69].

3.2. Inference for asynchronous Ising models

Many techniques for inverse Ising as discussed above
in Section 2 have been applied to data from asyn-
chronous Ising (or similar) dynamics, mainly for neuroscience
applications.[4,70–72] Since our purpose here is to compare
to inference using a time series we will for the equilibrium
case just consider the simplest method, which is naive mean-
field (nMF) (9). On the methodological side, much work has
been performed on applying inverse Ising techniques to syn-
chronous versions of Ising dynamics.[73–76] This work will not
be covered here. Dynamic mean-field inference as used below
was originally developed for synchronous updates in Ref. [77],
also see Ref. [78]. Inference in more realistic (and more com-
plex) models from neuroscience has also been carried out, but
is beyond the scope of this review, see Refs. [72,79,80].

3.3. Mean-field inference

We now derive versions of nMF and TAP inference for
asynchronously updated kinetic models following.[81]

For kinetic Ising model with Glauber dynamics, the state
of spin i is time dependent si(t), thus the time-dependent
means and correlations are naturally defined as

mi(t) = ⟨si(t)⟩ ,
ci j(t0 + τ, t0) =

〈
si(τ + t0)s j(t0)

〉
−mi(τ + t0)m j(t0). (25)

Then, with the master equation (15) and the flipping rate (16),
we have the equations of motion for means and correlations as

dmi(t)
dt

=−mi(t)+ ⟨tanh [Hi(t)]⟩, (26)

d⟨si(t)s j(t0)⟩
dt

=−⟨si(t)s j(t0)⟩+ ⟨tanh [Hi(t)s j(t0)]⟩. (27)

In the forward problem of statistical physics we would here
have the closure problem: the left-hand side is the time deriva-
tive of an average while the right-hand side contains terms of
an average of a higher order. In the inverse problem we start
by observing that the term on the left-hand side and the first
terms on the right-hand side of Eqs. (26) and (27) can be taken
from data. The second term on the right-hand side contains
averages of the tanh function and involves all kinds of higher-
order correlations. The equations thus have to be closed with
respect to these terms, but in a slightly different way in the
forward problem.

We introduce the notation

bi = θi +∑
j

Ji jm j (28)

for the non-fluctuating part of the argument of the tanh and
rewrite Hi(t) = θi +∑ j Ji js j(t) as

Hi ≡ bi +∑
j

Ji jδ s j(t), (29)

where the sum depends on the fluctuating term δ si(t) = si(t)−
mi. In lowest order we neglect fluctuations in altogether and
close the equation for magnetizations as

dmi(t)
dt

=−mi(t)+ tanhbi(t) (lowest order closure). (30)

If this equation reaches a stationary state it must satisfy mi =

tanhbi, which we recognize as the equation of physical mean-
field, i.e., Eq. (7). To the same lowest order, Eq. (27) is
d⟨si(t)s j(t0)⟩

dt =−⟨si(t)s j(t0)⟩+mi(t)m j(t), which relaxes to the
uncorrelated state.

The first non-trivial equation is obtained by expanding
Eq. (27) to first order which gives

⟨si(t)s j(t0)⟩+
d⟨si(t)s j(t0)⟩

dt

= mim j +(1−m2
i )

(
∑

j
Jik⟨δ sk(t)δ s j(t0)⟩

)
, (31)
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where we have used Eq. (30) and stationarity to identify the
derivative of the tanh function as (1−m2

i ). Introducing

Ci j(t, t0) = ⟨δ si(t)δ s j(t0)⟩= ⟨si(t)s j(t0)⟩−mim j, (32)

Di j(t, t0) = Ci j(t, t0)+
dCi j(t, t0)

dt
, (33)

we have

Di j(t, t0) = (1−m2
i )∑

k
JikCk j(t, t0). (34)

While this equation holds (to this order) for any two times t
and t0 it is especially convenient in the limit t → t0. Similarly
to the procedure in naive mean-field inference (9) we can then
invert Eq. (34) to arrive at an asynchronous mean field infer-
ence formula

J*,asyn−nMF = A−1DC−1, (35)

where A is the diagonal matrix given by Ai j = δi j(1 − m2
i ).

Equation (35) is a linear matrix equation with respect to Ji j.
We can solve it for Ji j directly for asynchronous Ising models.
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Fig. 1. The scatter plots for the true tested couplings versus the re-
constructed ones. (a) Reconstruction for the symmetric SK model with
k = 0; (b) inference for the asymmetric SK model with k = 1. Red
dots, inferred couplings with asynchronous nMF approximation; black
dots, inferred ones with equilibrium nMF approximation. The recov-
ered asynchronous Ji j’s in (a) are symmetrized while no symmetriza-
tion for them in (b). The other parameters for both panels are g = 0.3,
N = 20, θ = 0, L = 20×107.

Figure 1 shows the scatter plots for the tested couplings
versus the recovered ones. The tested model for Fig. 1(a) is
the symmetric SK model with k = 0 in Eq. (21) while fully
asymmetric SK with k = 1 for Fig. 1(b). The couplings are
reconstructed by the equilibrium nMF (9) (black dots) and the
asynchronous nMF (35) method (red dots), respectively. As

shown in Fig. 1(a), both the methods have the same ability to
recover the tested symmetric SK model. Here, the data length
L = 20 × 107. Nevertheless, the couplings inferred by the
asynchronous nMF needs to be symmetrized to keep the same
results with that from equilibrium nMF, especially for short
data length (not shown here). Figure 1(b) shows that, for the
fully asymmetric SK model with k = 1, the asynchronous nMF
works much better than the equilibrium nMF. This clearly
shows that equilibrium inference methods are typically not
suitable for non-equilibrium processes, while asynchronous
inference works for both equilibrium and non-equilibrium pro-
cess.

By a similar procedure we can also derive a higher-order
approximation, which we refer to as dynamic TAP. The start-
ing point is to redefine the bi(t) term in the tanh to include a
term analogous to the static TAP Eq. (11). We then first have

Hi(t) = bi −mi ∑
k ̸=i

J2
ik(1−m2

k)+∑
k

Jikδ sk(t), (36)

from which the lowest-order equation for the stationary state is
of the TAP form. The second step is to expand the tanh func-
tion in Eq. (27) around bi − mi ∑k ̸=i J2

ik(1 − m2
k) to the third

order and to keep terms up to third order in J. In this way we
get an inference formula, which is formally the same as in the
nMF approximation,

J*,asyn−TAP = A−1DC−1, (37)

where only the matrix A is different

Ai j = δi j(1−m2
i )

[
1− (1−m2

i )∑
j

J2
i j(1−m2

j)

]
. (38)

Equation (37) is a function of the couplings J, and therefore it
is a nonlinear equation for matrix J.

Equation (37) could be solved for J though two ap-
proaches. One iterative way is starting from reasonable initial
values J0

i j, and inserting them in the RHS of formula (37). The
resulting J1

i j is the solution after one iteration. They can be
again replaced in the RHS to get the second iteration results
and so on.

Jt+1 = A(Jt)−1DC−1. (39)

An alternative way is solving it by casting the inference for-
mula to a set of cubic equations. For Eq. (38), denoting

Fi = (1−m2
i )∑

j
J2

i j(1−m2
j) (40)

and plugging it into Eq. (37), and then we get the following
equation for Ji j:

Jasyn−TAP
i j =

Vi j

(1−m2
i )(1−Fi)

, (41)
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where Vi j = [DC−1]i j. Substituting Eq. (41) into Eq. (40), we
obtain the cubic equation for Fi as

Fi(1−Fi)
2 −

∑ j V 2
i j(1−m2

j)

1−m2
i

= 0. (42)

With the obtained physical solution for Fi, we get the recon-
structed couplings JTAP as

Jasyn−TAP
i j =

Jasyn−nMF
i j

1−Fi
. (43)

3.4. Maximum-likelihood inference

To emphasize how different is inference from a time se-
ries compared to from samples, we will now show that maxi-
mum likelihood inference of such dynamics from such data is
possible. We will also show that this approach admits approx-
imation schemes different from mean-field. The presentation
will follow.[82]

The log-likelihood of observing a full time series of a set
of interacting spins is analogous to the probability of a history
of a Poisson point process.[15] The probability space of events
in some time period [0 : t] consists of the number of jumps (n),
the times of these jumps (t1, t2, . . . , tn) and which spin jumps at
each time (i1, i2, . . . , in). The measure over this space is pro-
portional to the uniform measure over n times a weight

µ
(1)
i1

dt1 · · ·µ(n)
in dtn

× exp
(
−µ

(1)t1 −µ
(2)(t2 − t1)−·· ·−µ

(n+1)(t − tn)
)
,

where µ
(n)
in is the jump rate in open time interval (ti−1 : ti) of

the event that actually took place at time ti, and µ(n) = ∑i µ
(n)
i .

We recall from the discussion of the Gillespie algorithm that in
the open time interval (ti−1 : ti) all the rates stay the same, and
that the length of the interval is an exponentially distributed
random variable with parameter which is the sum of all the
rates. In another time interval some or all of the rates can be
different.

A rigorous construction of the above path probability can
be found in Appendix A of Ref. [83]. Here we will follow a
more heuristic approach and introduce a small finite time δ t
such that we can use the first simulation approach discussed in
Section 3. The objective function to maximize is then

ℒ= ∑
i,t

log

[
(1− γδ t)δsi(t+δ t),si(t)+ γδ t

esi(t+δ t)Hi(t)

2coshHi(t)

]
. (44)

The sums in Eq. (44) go over all spins i and all times sepa-
rated by the small increment δ t. The terms in Eq. (44) can
be understood as the lowest order approximation (linear in δ t)
of log∏it Pi(si(t +δ t)|𝑠(t)), where Pi is the conditional prob-
ability of spin i at time t + δ t, conditioned on the configura-
tion of all spins at time t. Maximum likelihood inference of

dynamics from a time series is therefore analogous to pseudo-
maximum likelihood in Eq. (14) from independent samples.
At the price of potentially very many and very biased samples
(at most times no spin will jump) this points to that inference
from a time series is a fundamentally easier task.

Separating times with and without spin flips (45), the re-
sulting learning rules will be

δJi j ∝
∂ℒ
∂Ji j

= ∑
flips

[si(t +δ t)− tanh(Hi(t))]s j(t)

+
γδ t
2 ∑

no flips
qi(t)si(t +δ t)s j(t), (45)

with qi(t)≡ [1− tanh2(Hi(t))], and it includes the rule for the
θi with the convention Ji0 = θi, s0(t) = 1. Following Ref. [82]
where we also considered the case that the times where noth-
ing happens are known, we will refer Eq. (45) as the “spin-
history-only” (SHO) algorithm.

Similarly to mean-field inference, Eq. (45) can also be
averaged, which gives the learning rule

δJi j ∝ γ
−1Ċi j(0)+Ci j(0)−⟨tanh(Hi(t))s j(t)⟩, (46)

which we refer to as AVE.[82] AVE requires knowing
equal-time correlations, their derivatives at t = 0, and
⟨tanh(Hi(t))s j(t)⟩. This latter quantity depends on the model
parameters (through Hi(t)), so, in practice, estimating it at
each learning step requires knowing the entire spin history, the
same data as needs SHO leaning.

All of four methods now introduced to infer parame-
ters from a time series (nMF, TAP, SHO and AVE) will pro-
duce a fully connected network structure. Similarly to inverse
Ising from samples we may want to include L1 penalties to
get the graphical structure.[84] Such effects are considered in
Ref. [85], showing that inferring the sparsity structure from
time series data is both a feasible and reliable procedure.

3.5. Performance of kinetic Ising inference methods

In this section, performance tests of the four above intro-
duced algorithms for recovering parameters in asynchronous
Ising models are presented. We compared the performance of
two ML algorithms SHO, and AVE to each other and to two
mean-field algorithms nMF and TAP.

The tested model is as discussed above the fully asym-
metric SK model (Ji j is independent of J ji), Ji j’s are identi-
cally and independently distributed Gaussian variables with
zero means and variance g2/N. As a performance measure,
we use the mean square error (ε) which measures the L2 dis-
tance between the inferred parameters and the underlying pa-
rameters used to generate the data

ε =
∑i̸= j(J*i j − JTrue

i j )2

N(N −1)
, (47)
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where JTrue
i j are the true values of interactions and J*i j are the

inferred ones. We study the reconstruction error for different
data length L, system size N, external field θ and coupling
strength g.

Figure 2 shows the performance of these algorithms.
Each panel also shows two ML-based learning methods SHO
and AVE appear to perform equally well for large enough L
since they effectively use the same data (the spin history).
Note however the opposite trend in Fig. 2(a) shows the re-
construction getting better with longer data length L for both
ML and mean-field based methods. Figure 2(b) shows that
the MSE for the ML algorithms is insensitive to N, while two
mean-field algorithms improve as N becomes larger; in these
calculations, the average numbers of updates and flips per spin
were kept constant, taking L = 5× 105N). Figure 2(c) shows
that the performance of two ML algorithms is also not sensi-
tive at all to θ , while nMF and TAP work noticeably less well
with a non-zero θ . The effects of (inverse) g are depicted in
Fig. 2(d). For fixed L, all the algorithms do worse at strong
couplings (large g). The nMF and TAP do so in a much more
clear fashion at smaller g, growing approximately exponen-
tially with g for g greater than ≈ 0.2. In the weak-coupling
limit, all algorithms perform roughly similarly, as already seen
in Fig. 2(a).
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Fig. 2. Mean square error (ε) versus (a) data length L, (b) system size
N, (c) external field θ and (d) temperature 1/g. Black squares show
nMF, red circles, TAP, blue up triangle SHO and pink down triangle
AVE respectively. The parameters are g = 0.3, N = 20, θ = 0, L = 107

except when varied in a panel.

To summarize, the ML methods recover the model bet-
ter, but in general more slowly. The mean-field based learning
rules (nMF and TAP) are much faster in inferring the couplings
but have worse accuracy compared with that of the ML-based
iterative learning rules (AVE, SHO).

4. Example applications of asynchronous Ising
model
Inverse Ising problems have been applied to a wide

rage of data analysis, ranging from equilibrium reconstruc-

tion methods to kinetic ones. In this section, based on
Refs. [81,86], we will present as illustrations applications to
one data set of neuronal spike trains, and one data set on trans-
action data of stocks on financial market. Both areas have
been investigated extensively in the last ten years. We refer to
Refs. [87–93] for more recent neuronal data and discussions
of inference in this context and to Refs. [94–105] for a sample
of contributions considering financial data.

For the neuronal data, we show two ML-based learning
rules. When considering the data as a time series we use the
AVE method of Eq. (35). However, when considering the
same data as independent samples from the Gibbs distribu-
tion (1) we use Boltzmann machine (BM) (introduced below).
We find that for this data the couplings between the neurons
obtained are comparable. This means that although there is no
a priori for this to be so, the dynamic process of this neuron
system apparently satisfies detailed balance or has a station-
ary distribution of the form of Eq. (1) for other reasons. One
clear difference is the self-couplings from one neuron to itself,
which are absent in Eq. (1) and are typically present in the dy-
namic model. A further difference is that to infer parameters
from Eq. (1) using samples, those samples have to be gener-
ated by Monte Carlo procedure. Although both the methods
are based on ML, the dynamic version is thus considerably
faster than BM.

For the financial stock trade data we show two mean-
field-based algorithms. When considering the data as a time
series we use the asynchronous nMF method of Eq. (35).
However, when considering the same data as independent
samples from Eq. (1), we use naive mean-field inference (here
equilibrium nMF) of Eq. (9). We note that we here apply in-
verse Ising inference to binary data obtained by transforming
a time series of financial transactions (see below). Again we
find that the results from the two procedures are comparable,
except that asynchronous nMF allows the inference of self-
couplings, as well as directed links (asymmetric couplings).

4.1. Case 1: Reconstruction of a neuron network from
spiking trains

Neurons are the computational units of the brain. While
each neuron is actually a cell with complicated internal struc-
ture, there is a long history of considering simplified models
where the state of a neuron at a given time is a Boolean vari-
able. Zero (or down, or −1) then means resting, and one (or
up, or +1) means firing, or having a spike of activity. In most
neural data most neurons are resting most of the time.

Data description and representation of data The neu-
ronal spike trains are from salamander retina under stimulation
by a repeated 26.5-second movie clip. This data set records the
spiking times for neurons and has a data length of 3180 s (120
repetitions of the movie clip). Here, only the first N = 20 neu-
rons with highest firing rates in the data set are considered.
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The data has been binned with time windows of 20 ms (the
typical time scale of the auto-correlation function of a neu-
ron) in the previous study.[106] However, since we are using
the kinetic model, we could study this data set using a much
shorter time bin which leads low enough firing rates and (al-
most) never more than one spike per bin. Then, the temporal
correlations with time delays between neuron pairs as well as
the self-correlations become important.

For the asynchronous Ising model, the time bins are
δ t = 1/(γN). For neuronal data, γ can be interpreted as the
inverse of the time length of the auto-correlation function,
which is typically 10 ms or more.[106] To generate the bi-
nary spin history from this spike train data set, the spike trains

should be separated into time bins with length γδ t = 1/20.
This means that the size of time bins should be chosen as
δ t = 1/(20γ) = 0.5 ms. The spin trains can be transformed
in to binaries as follows: a +1 is assigned to every time bin in
which there is a spike and a −1 when there is no spikes. To
avoid the case that the translation always end up with isolated
instances of +1 and superfluous −1 s, the memory process
for each neuron is introduced to the data set. It is a time pe-
riod with an exponential distribution with mean of 1/γ in the
data translation. Denote the total firing number of neuron i
as Fi, and t f

i as the firing time of f th spike for neuron i, where
i= 1, . . . ,N and f = 1, . . . ,Fi−1, then the mapping of the spike
history is follows:

si(t) =

{
1, if t ∈

[
t f
i ,min (t

f+1
i , tn

i +X)
)

with X ∼ exp(γ−1),

−1, otherwise,
(48)

where X is a period drawn from exponential distribution with
mean 10 ms. By this way, we obtain the asynchronous type of
data that are needed for the asynchronous model.

Inference methods For this fairly small system we use
two types of ML to learn the parameters of Eq. (1). In the equi-
librium case of Eq. (3) this can be carried out with the iterative
method called Boltzmann machine (BM) which is defined as
follows:

δθi = η (⟨si⟩Data −⟨si⟩Model) ,

δJi j = η (⟨sis j⟩Data −⟨sis j⟩Model) .

In above η “learning rate” is a relaxation parameter. For larger
systems BM does not scale since computing the ensemble av-
erages ⟨si⟩Model and ⟨sis j⟩Model is costly, but for the data under
consideration here it is a feasible method. When retaining the
time series nature of the data we on the other hand use the AVE
learning rule of Eq. (46).

↩. ↩. ↩.  . . . .

↩.

↩.

↩.
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Fig. 3. Inferred asynchronous versus equilibrium couplings for retinal
data. Red open dots show the self-couplings which by convention are
equal to zero for the equilibrium model.

Inference results In the current inference of retina func-
tional connections, the value of model parameters like window
size δ t, inverse time scale γ are set as a priori according to the

previous studies on equilibrium Ising model. This avoids sys-

tematic studies over the value of parameters.

As presented in Fig. 3, the inferred couplings by BM

and asynchronous kinetic Ising model are very close to each

other. We also tested what happens to the couplings of the

asynchronous model if during learning we symmetrized the

couplings matrix at each iteration by adding its transpose to

itself and dividing by two and also putting the self-couplings

to zero. We find that the resulting asynchronous couplings get

even closer to the equilibrium ones, which is consistent to the

conclusion for kinetic Ising data.

However, the asynchronous model allows the inference

of self-couplings (diagonal elements of the coupling matrix)

which are not present in the equilibrium model. As shown

in Fig. 3, the diagonals from the equilibrium model equals to

zeros by convention and denoted by the open red dots. Fur-

thermore, to be different from the symmetric couplings by the

equilibrium model, the asynchronous model provides more de-

tails as the inferred couplings are directed and asymmetric.

This result provides a guide for the use of the equilib-

rium Ising model: if the asynchronous couplings are far away

from the equilibrium ones, it will imply that the real dynami-

cal process does not satisfy the Gibbs equilibrium conditions

and that the final distribution of states is not the Gibbs equilib-

rium Ising model. Since inferring the equilibrium model is an

exponentially difficult problem, requiring time consuming for

Monte Carlo sampling while the asynchronous approach does

not. The asynchronous learning rules thus allow the inference

of functional connections that for the retinal data largely agree

with the equilibrium model, but the inference is much faster.

080201-12



Chin. Phys. B Vol. 29, No. 8 (2020) 080201

4.2. Case 2: Reconstruction of a finance network

In this study, we present equilibrium nMF (9)) and asyn-
chronous nMF (35) algorithm to infer a financial network from
trade data with 100 stocks. The recorded time series are trans-
formed into binaries by local averaging and thresholding. This
introduces additional parameters that have to be studied exten-
sively to understand the behavior of the system. The inferred
couplings from asynchronous nMF method is quite similar to
the equilibrium ones. Both produced network communities
have similar industrial features. However, the asynchronous
method is more detailed as they are directed compared with
that from the equilibrium ones.

Data description and representation The data was
transactions recordings on the New York Stock Exchange
(NYSE) over a few years. Each trade is characterized by a
time, a traded volume, and a price. We only focus on the trades
for 100 trading days between 02.01.2003 and 30.05.2003.
However, trading volume and trading time only are utilized
in the study. To avoid the opening and closing periods of the
stock exchange, 104 central seconds of each day are employed
as in Ref. [107]. Two parameters are introduced to the data
transform as the sliding window is adopted. One is the size of
the sliding time window (denoted as ∆t), the other one is the
shifting constant which is fixed as 1 s.
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Fig. 4. Traded volume data for the stock of Fannie Mae (FNM), a
mortgage company. Black line for time series of traded volumes Vi(t),
red for summed volumes during time interval ∆t, blue for the threshold
V th

i = χV av
i ×∆t. Parameters: ∆t = 50 s and χ = 1.

For stock i, the sum of the volumes Vi(t,∆t) traded in
window [t, t + ∆t) is compared with a given volume thresh-
old V th

i = χV av
i ∆t, where V av

i is the average (over the whole
time series) volume of the considered stock traded per second,
and χ a parameter controlling our volume threshold:

si(t) =

{
1, if Vi(t,∆t)≥V i

th,

−1, if Vi(t,∆t)<V i
th.

(49)

We explored the parameters ∆t and χ systematically for the in-
ference with the goal of finding values of the parameters which
yield inferred couplings containing interesting information.

Figure 4 shows the traded volume information for a mort-
gage company Fannie Mae (FNM). With the mapping ap-
proach described in Eq. (49), we have +1’s above the blue
threshold line in Fig. 4 while −1’s below that line. Then the
asynchronous data is ready for the network reconstruction.

Inference methods With the transformed binaries, the
magnetization mi and correlations Ci j(τ) are defined as
Eq. (25). With them, two different inference methods with
nMF approximation are utilized for the reconstruction.

Equilibrium nMF (i ̸= j), which only focuses on equal
time correlations[108]

Ji j =−C(0)−1
i j .

Asynchronous nMF (Ref. [81]) uses the derivative of the
time-lagged correlations Ċi j(τ), as shown in Eq. (35) and
rewritten as

Ji j =
1

1−m2
i

(
dC(τ)

dτ
|τ=0C(0)−1

)
i j
.

Reconstruction results Massive explorations over differ-
ent values of the window size ∆t and χ’s are complimented
to achieve meaningful interactions between stocks. A natural
rough approach is to consider that couplings will contain in-
teresting information if they are big in absolute value: they in-
dicate a strong interaction between stocks. For asynchronous
inference, the derivative of the time-lagged correlations Ċi j(τ)

is computed through a linear fitting of this function Ci j(τ) us-
ing four points: C(0), C(∆t/5), C(2∆t/5) and C(3∆t/5).

Figure 5 shows that both the inference methods give sim-
ilar distributions of couplings. For comparison, the distribu-
tions are re-scaled so as to have the same standard deviation.
It can be remarked that the inferred couplings have a strictly
positive mean and a long positive tail. This prevalence of pos-
itive couplings can intuitively be linked with the market mode
phenomenon:[109–112] a large eigenvalue appears, correspond-
ing to a collective activity of all stocks, as illustrated in Fig. 6.
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Fig. 5. Histograms of inferred couplings by equilibrium nMF and re-
scaled asynchronous nMF. Black squares for re-scaled N(Jasyn) to have
the same standard deviation as N(Jeq). Here χ = 0.5 and ∆t = 200 s for
both the methods.

The similarity of interaction matrices J and J′ inferred
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from different methods can be measured by a similarity quan-
tity QJ,J′ , which is defined as

QJ,J′ =
∑i, j Ji jJ′i j

∑i, j max(Ji j,J′i j)
2 . (50)

This measurement compares elements of two matrices one by
one and gives a global similarity measure. It takes real values
between 1 (when Ji j = J′i j for all i and j) and −1 (Ji j = −J′i j

for all i and j), and values close to zero indicate uncorrelated
couplings. The values of Q is smaller than 0.02 in absolute
value when all elements of the vectors Ji j and J′i j are drawn
independently at random from a same Gaussian distribution,
of mean 0, and for different values of the standard deviation
of this distribution. Here, the value of Q for the inferred Ji j’s
by equilibrium nMF and asynchronous nMF is about 0.5 with
χ = 0.5 and ∆t = 50 s, which indicates these two methods are
not independent of each other.
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Fig. 6. Histograms of the eigenvalues of the equal time connected cor-
relation matrix. Parameters: χ = 0.5 and ∆t = 100 s.

Next, we will present two inferred financial networks that
recovered by equilibrium and asynchronous nMF method, re-
spectively. As the inferred finance networks are densely con-
nected, we focus only on the largest couplings, which can be
explained by closely related activities of the considered stocks.
Figure 7(a) shows that with equilibrium inference, more than
half the stocks in the data can be displayed on a network where
almost all links have simple economical interpretations.

The network of Fig. 7(a) presents different communities,
each color represents one industrial sector. They are mostly
determined by a common industrial activity. Some of the links
are very easy to explain with the proximity of activities (and
often quite robust). For instance, the pairs FNM-FRE (Fan-
nie Mae-Freddie Mac, active in home loan and mortgage),
UNP-BNI (Union Pacific Corporation-Burlington Northern
Santa Fe Corporation, railroads), BLS-SBC (BellSouth-SBC
Communications, two telecommunications companies now
merged in AT&T), DOW-DD (Dow-DuPont, chemical compa-
nies), MRK-PFE (Merck & Co.-Pfizer, pharmaceutical com-
panies), KO-PEP (The Coca-Cola Company-PepsiCo, bever-
ages). These two last companies display strong links with

the medical sector at different scales of volume and time, as
KO here with MDT (Medtronic) and JNJ (Johnson & John-
son). This medical sector is itself linked to the pharmaceuti-
cal sector with PFE, MRK, LLY (Lilly), BMY (Bristol-Myers
Squibb) and SGP (Schering-Plough). Telecommunications
(BLS, SBC) are linked to electric power with DUK (Duke En-
ergy).

(a)

(b)

Fig. 7. Inferred financial networks, showing only the largest interac-
tion strengths (proportional to the width of links and arrows). Colors
are indicative, and chosen by a modularity-based community detection
algorithm.[16] Parameters: χ = 0.5 and ∆t = 100 s. (a) Equilibrium
inference (the figure originates from Ref. [86]). (b) Asynchronous in-
ference with τ = 20 s.

GE (General Electrics) is for a large range of parameters a
very central node, which is consistent with its diversified activ-
ities. Figure 7(a) from Ref. [86] presents the relation between
PG (Procter & Gamble) and WMT (Walmart), both retailers
of consumer goods come at this level of interaction strength
through GE.

The banking sector as shown by a chain with light blue
color is linked to the sector of electronic technology (with
dark blue color). Moreover, the defense and aerospace sec-
tor as shown in magenta is linked to engines and machinery
with (CAT) (Caterpillar Inc.) and DE (John Deere), and more
strangely, to packaged food with CAG (ConAgra Foods), SYY
(Sysco) and K (Kellogg Company).

Figure 7(b) presents the results from asynchronous nMF
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under the same conditions. It shows that the results of equi-
librium and asynchronous inference are consistent, and that
asynchronous inference provides additional information, as it
infers an directed network. For instance, the financial sector
is directed and also influenced by the medical sector. The de-
tailed descriptions for each stock can be found in Ref. [113].

From the network samples, we have the following two
basic conclusions. First, they show market mode (most of
the interaction strengths found are usually positive, which
indicates that the financial market has a clear collective
behavior)[110,111] even only trade and volume information is
considered. Stocks tend to be traded or not traded at the same
time.

In addition, the strongest inferred interactions can be eas-
ily understood by similarities in the industrial activities of the
considered stocks. This means that financial activity tends to
concentrate on a certain activity sector at a certain time. For
price dynamics this phenomenon is well-known,[109,112,114]

but it is perhaps more surprising that it appeared also based
on only information of traded volumes.

5. Fitness inference of population genetics
We now turn to inverse Ising (Potts) techniques applied to

sequence-type biological data. This has variously been called
direct coupling analysis (DCA)[36,43,46,47] and max-entropy
modeling;[35,115] as noted above, other names are also in use.
We will use the terms inverse Ising and DCA interchangeably.

A common feature of all these applications is that the
input is a static table of N · L symbols. Each row is a se-
quence of L symbols from data, and there are N such rows
(N samples). A breakthrough application has been to identify
residues (amino acid molecules) that are spatially close in pro-
teins (chains of amino acids). The table then represents a fam-
ily of proteins with supposedly similar structure and suppos-
edly same origin, and each row is the amino acid sequence of
a member of that family.[36,43,46,47] The basic idea is that two
columns in the table (two positions in the protein structure)
have non-trivial statistical dependency if their joint variation
influence biological fitness. Such co-dependency in biologi-
cal fitness is called epistasis. The most immediate cause of
epistatsis among loci inside one gene coding for one protein is
through structure.[116] Often this is pictorially motivated by a
mutation changing charge, hydrophilic/hydrophobic or size of
one member of a residue pair, which then changes the relative
fitness of variants (alleles) of the other member of the pair. In
certain other cases dependencies discovered by DCA can be
attributed to other causes than structure[117,118] but those cases
appear to be relatively rare.

Many details are needed to turn the above to powerful
tool in protein structure prediction. One aspect is that pro-
teins in a family typically have different lengths, and that

therefore the N · L table is not directly taken from the data,
but only after multiple sequence alignment, which has to be
carried out with the help of bionformatics software, or the
ready alignment taken from a data base such as PFAM.[119,120]

Another is that predicting contacts are only one ingredient
in a much larger computational pipeline which uses inter-
molecular force fields, predictions on secondary structure and
solvability and know-how developed in the protein science
community over many years. Still, impressive results have
been achieved.[121–123] It should be noted that if the goal is to
predict protein structure a purely data-driven approach is pos-
sible, where a model of the deep neural network type is trained
on large training sets comprised of sequence-structure pairs.
As has been widely reported, such an approach from Google
Deep Mind currently outperforms model-based learning meth-
ods such as DCA for this task.[124,125] The price is computa-
tional cost beyond what most academic researchers can afford,
and lack interpretability of the inferred model, which could be
close to Eq. (1), but could also be very different.

Beyond protein structures, DCA has been used to predict
nucleotide-nucleotide contacts of RNAs,[126] multiple-scale
protein-protein interactions,[118] amino acid–nucleotide inter-
action in RNA-protein complexes,[127] interactions between
HIV and the host immune system,[128–130] and other synergis-
tic effects not necessarily related to spatial contacts.[131–133]

Of particular relevance for the following are applications of
DCA to whole-genome sequence data from bacterial popu-
lations, in Ref. [134] on Streptoccoccus pneumoniae and in
Ref. [135] on Neisseria gonorrhoeae. Standard versions of
DCA are rather compute-intensive for genome-scale inference
tasks, but methodological speed-ups[136,137] and alternative
approaches[138] have been quickly developed. Antibiotic resis-
tance is an important medical problem throughout the world,
and so is the relative paucity of new drugs. Combinatorial drug
combinations are therefore promising avenues to look for new
treatment strategies. The obstacle is the combinatorial explo-
sion of combinations: if there are L potential individual tar-
gets there will be L2 potential target pairs, and so on. The
hope is that DCA could be one way (one out of many) to pre-
dict which combinations may have an effect on the grounds
that they are already reflected as epistasis in natural sequence
data. In that respect it was promising that Skwark et al. in
Ref. [134] were able to retrieve interactions between members
of the penicillin-binding protein (PBP) family of proteins; re-
sistance to antibiotics in the β -lactam family of compounds is
in S. pneumoniae associated to alterations in their target en-
zymes, which are the PBPs.[139]

Evolution is a dynamic process. We should imagine that
the biological sequence data used in DCA are as in Sec-
tion 2.2 (or more involved). The underlying dynamics is of
Ntot sequences (a number which could change with time, but
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which we will assume constant) of length L (which could also
change, but which we will also assume constant), and which
evolve evolving for a time T . At the end of the process we
sample N sequences. In protein data, T is typically of the
order of hundreds of millions of years, and the model is ob-
viously simplified. In the bacterial whole-genome data of
Refs. [134,135], T may be as short as years or decades, and
the model may be closer to reality. In any case, the goal is
to infer fitness from the sampled sequences, and to understand
when it can (or cannot) reasonably be done by DCA.

We will structure the discussion as follows. In Sec-
tion 5.1, we will discuss dynamics of a population in a fitness
landscape on which there is a large literature both in popula-
tion genetics and in statistical physics. We will there define
what we mean by fitness, and introduce recombination. In
Section 5.2, we will present the important concept of quasi-
linkage equilibrium (QLE), originally due to Kimura, and in
Section 5.3 we will state the relation between inferred inter-
actions and underlying fitness that hold in QLE. Numerical
examples and tests are presented in Section 5.4.

5.1. Dynamics of a sexually reproducing population in a
fitness landscape

That there exist formal similarities between the dynam-
ics of genomes in a population and entities (spins) in sta-
tistical physics has been known for a long time. Fokker–
Planck equations to describe the change of probability dis-
tributions over allele frequencies were introduced by Fisher
almost a century ago,[140,141] and later, in a very clear a con-
cise manner, by Kolmogorov.[142] The link has been reviewed
several times from the side of statistical physics, for instance
in Refs. [143,144]. Central to the discussion in the follow-
ing will be recombination (or sex), by which two parents give
rise to an offspring, the genome of which is a mixture of the
genome of the parents. From the point of view of statistical
physics, recombination is a kind of collision phenomena. It
therefore cannot be described by linear equations (Fokker–
Planck-like equations) but can conceivably be described by
nonlinear equations (Boltzmann-like equations). The mech-
anisms to be discussed are of this type, where Boltzmann’s
Stosszahlansatz is used to factorize the collision operator.

All mammals reproduce sexually, as do almost all birds,
reptiles and fishes, and most insects. Many plants and fungi
can reproduce both sexually and asexually. Recombination in
bacteria is much less of a all-or-none affair. Typically only
some genetic material is passed from a donor to a recipient,
directly or indirectly. The main forms of bacterial recombi-
nation are conjugation (direct transfer of DNA from a donor
to a recipient), transformation (ability to take up DNA from
the surroundings), and transduction (transfer of genetic mate-
rial by the intermediary of viruses). The relative rate of re-
combination in bacteria varies greatly between species, and

also within one species, depending on conditions. As one
example we quote a tabulation of the ratio of recombina-
tion to mutation rate in S. pneumoniae, which has been mea-
sured to vary from less than one to over forty.[145] There are
long-standing theoretical arguments against the possibility of
complex life without sex, as a consequence of Eigen’s “er-
ror catastrophe”.[146,147] It is likely that most forms of life use
some form of recombination, albeit perhaps not all the time,
though the relative rate of recombination to other processes
may be small. In the following we will eventually assume that
recombination is faster than other processes, which may be as
much the exception as the norm in bacteria and other microor-
ganisms. Such a “dense-gas” (using the analogy with colli-
sions) is however where there is an available theory which can
be used at the present time.

The driving forces of evolution are hence assumed to be
genetic drift, mutations, recombination, and fitness variations.
The first refers to the element of chance; in a finite population
it is not conformed which genotypes will reproduce and leave
descendants in later generations. The last three describe the
expected success or failure of different genotypes.

Genetic drift can be explained by considering N differ-
ent genomes s1, . . . ,sN . Under neutral evolution all genomes
have equal chance to survive into the next generation, but that
does not mean all will do so. In a Wright–Fisher model one
considers a new generation with N new genomes s′1, . . . ,s′N ,
where each one is a drawn randomly with uniform probabil-
ity from the previous generation. The chance (or risk) that an
individual does not survive from one generation to the next is
then

(
1− 1

N

)N
, which is about e−1 ≈ 37%. Monte Carlo sim-

ulations of finite populations necessarily include such effects
where some successful individuals crowd out other less fortu-
nate ones.

Mutations are random genome changes described by
mean rates. A model of N individuals evolving under mu-
tations and genetic drift which happen synchronously is also
called a Wright–Fisher model, and when they happen asyn-
chronously a Moran model.[144] If the genome (or the vari-
ability of the genome) consists of only one biallelic locus (one
Ising spin, L = 1) then the state of a population will be given
by the number k of individuals where the allele is “up” (N − k
individuals then have the “down” allele). The dynamics of the
Moran model can be seen as the dynamics of N spins where
each spin can flip on its own or can copy the state of another
spin (or do nothing). It can also be seen as a transitions in a
finite lattice where k = 0 means all spins are down, and k = N
means all spins are up. The probability distribution over this
variable k changes by a Master equation where the variable
can take values 0,1, . . . ,N. If mutation rate is zero the two end
states in the lattice will be absorbing: eventually all individuals
will be up, or all will be down. If mutation rate is non-zero but
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small, the stationary probability distribution will be centered
on small and large k and transitions between the two macro-
scopic states will happen only rarely. For a very pedagogical
discussion of these classical facts we can refer to Ref. [144].

The evolution of the distribution over L biallelic loci un-
der mutations has many similarities to Eq. (15), and always
satisfies detailed balance (this is not generally true for more
than one allele per locus and a general mutation matrix). As
the rate ri(𝑠) in Eq. (6) the rate of mutations can and generally
does depend on genomic position (“mutation hotspots”) and
on the alleles at other loci (“genomic context”). For theoreti-
cal discussion and simulations it is however more convenient
to assume an overall uniform flipping rate as in Eq. (16).

A fitness landscape means a propensity for a given geno-
type to propagate its genomic material to the next generation.
This propensity is a function of genotype, and called a fitness
function. It is important to note that this concept does not
cover all that fitness can mean in biology. Excluded effects are
for instance cyclical dominance where A beats B, B beats C and
C beats A.[148–152] We will assume that the fitness of genotype
𝑠 which carries allele si on locus i depends on single-locus
variations and pair-wise co-variations, that is,

F(𝑠) = F0 +∑
i

fisi +∑
i j

fi jsi,s j. (51)

The first term is an overall constant. The second term, linear in
the genome, is called additive component of fitness. The last
term, quadratic in the genome, is called the epistatic compo-
nent of fitness. The dynamics due to Darwinian selection on
the level of populations is thus

∂P(𝑠)
∂ t

|sel = P(𝑠)(F(𝑠)−⟨F(𝑠)⟩) , (52)

where ⟨F(𝑠)⟩ = ∑𝑠 F(𝑠P(𝑠) is the average fitness over the
population. Evolutionary dynamics due to fitness in a fit-
ness landscape is thus quadratic in the distribution function
(8P(𝑠)⟨F(𝑠)⟩ is quadratic in P(𝑠)). The conditions under
which the combined dynamics under mutations and fitness
satisfy detailed balance are a kind of integrability conditions.
On the level of dynamics on allele frequencies such a con-
dition is known as the existence of a Svirezhev–Shahshahani
potential,[153–156] also see Ref. [157].

Recombination (or sex) is the mixing of genetic material
between different individuals. In diploid organisms (such as
human) every individual has two copies of each separate com-
ponent of its genetic material (chromosome), where one comes
from the father and one comes from the mother, each of whom
also has two copies, one from each grandparent. When pass-
ing from the parents to the child the material from the grand-
parents is mixed in the process called cross-over, so that one
chromosome of the child inherited from one parent typically

consists of segments alternately taken from the two chromo-
somes of that parent.

In haploid organisms the situation is both simpler since
each organism only has one copy of its genetic material, and
also more complicated since the mixing of information can
happen in many different ways. It is convenient to postulate a
dynamics like a physical collision process

∂P(𝑠)
∂ t

|rec = r ∑
ξ ,𝑠′

C(ξ )
[
Q(𝑠1,𝑠2)P2(𝑠1,𝑠2)

−Q(𝑠,𝑠′)P2(𝑠,𝑠
′)
]
, (53)

where r is an overall rate of sex compared to other processes,
Q(𝑠1,𝑠2)) is the chance of individuals 𝑠1 and 𝑠2 mating (reac-
tion probability) and C(ξ ) is the chance that they produce an
offspring given by a pattern ξ [158,159] (probability of outcome
of reaction). On the left hand side we have the single-genome
distribution function P, and on the right-hand side the two-
genome distribution function P2; the equations are closed by a
Stosszahlansatz

P2(𝑠1,𝑠2) = P(𝑠1)P(𝑠2). (54)

The complexities of recombination can then be accommodated
by the two functions Q and C. A method to infer recombina-
tion hotspots in bacterial genomes was discussed in Ref. [160],
and the issue was also discussed in Ref. [161], in relation to
the same “Maela” data set used in Ref. [134]. Detailed de-
scriptions of the relation between on the one hand (𝑠,𝑠′) and
on the other (𝑠1,𝑠2) as parameterized by ξ can be found in
Refs. [158,159].

5.2. The quasi-linkage equilibrium phase

The concept of quasi-linkage equilibrium (QLE) and
its relation to sex were discovered by population geneticist
Kimura,[162–164] and later developed by Neher and Shraiman
in two influential papers.[158,165] We will refer to this theory of
QLE as the Kimura–Neher–Shraiman (KNS) theory. To define
QLE and to state the main result of KNS we must first intro-
duce the simpler concept of linkage equilibrium (LE), which
goes back to the work of Hardy and Weinberg more than a
century ago.[166,167]

Consider two loci A and B where there can be, respec-
tively, nA and nB alleles. The configuration of one genome
with respect to A and B is then (xA,xB), where xA takes values
in {1, . . . ,nA} and xB takes values in {1, . . . ,nB}. The config-
uration of a population of N individuals is the set [(x(s)A ,x(s)B )],
where s ranges from 1 to N. This set defines the empirical
probability distribution with respect to A and B as

PAB(xA,xB) =
1
N

N

∑
s=1

1
x(s)A ,xA

1
x(s)B ,xB

, (55)
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where 1a,b is the Kronecker delta. Similarly we can define
distributions over one locus as PA(xA) =

1
N ∑

N
s=1 1

x(s)A ,xA
, and

PB(xB). The distribution of genomes in a population over loci
A and B is said to be in linkage equilibrium (LE) if the alle-
les aA and xB are independent under the empirical distribution,
i.e., if PAB(xA,xB) =PA(xA)PB(xB). All other distributions are
in linkage disequilibrium (LD).

Specifying for completeness to the case of interest here
where all loci are biallelic and epistatic contributions to fit-
ness is quadratic (pairwise dependencies), and quasi-linkage
equilibrium is a subset of distributions in LD where the joint
distribution over loci is the Gibbs distribution in Eq. (1). The
fundamental insight of Kimura was that such distributions ap-
pear naturally in sexually reproducing populations where re-
combination is fast.[162–164] In this setting, epistatic contribu-
tion to fitness is a small effect since there is a lot of mixing of
genomes between individuals from one generation to the next.
The dependencies (parameters Ji j) are also small, such that
the distributions over alleles are almost independent. In other
words, the distributions in QLE which appear in KNS theory
are close to being in linkage equilibrium. Nevertheless, the
parameters hi and Ji j in Eq. (1) are hence here consequences
of a dynamical evolution law.

The derivation of Eq. (1) from the dynamics described
above in Section 5 has been given in the literature[158,159] and
will be therefore not be repeated here. We will instead just
state the most important result of the KNS theory. This is

Ji j =
fi j

rci j
, (56)

where ci j characterizes the amount of recombination between
loci i and j. Referring to the dynamics (53) this quantity is
defined as

ci j = ∑
ξ

C(ξ )(ξi(1−ξ j)+(1−ξi)ξ j) . (57)

In words, ci j is simply the probability that the alleles at loci i
and j were inherited from different parents. In most models
of recombination this will depend on the genomic distance be-
tween i and j such that ci j will be close to zero when i and j
are close, and then grow to 1

2 when they are far apart.

5.3. Inferred interactions and underlying fitness

Turning around the concepts, Eq. (56) can be interpreted
by a inference formula of epistatic fitness from genomic data:

f *i j = J*i j · rci j, (58)

where * indicates the inferred value.
The parameter J*i j can be determined from data by DCA

while the parameters r and ci j have to be determined by other
means. However, since the QLE phase is characterized by Ji j

being small, or, alternatively, fi j being smaller than rci j, we
can make the simplifying assumption that ci j ≈ 1

2 for all pairs
of loci we consider. Formula (58) then says that underlying
fitness parameters fi j are proportional to inferred Ising param-
eters Ji j, where the proportionality is r/2.

Nevertheless, Eq. (58) will also work when the variation
of ci j is taken into account, as long as the product rci j remains
smaller than fi j. It is not currently clear if there also exists
an extension of Eq. (58) which also holds when rci j is of the
order of or larger than fi j, including the case when i and j are
close (“hitch-hiking mutations”).

5.4. Fitness inference for synthetic Ising genomic data

We here describe results obtained from simulating a fi-
nite population using the FFPopSim software.[168] Partial re-
sults in the same direction were reported in Ref. [159]; more
complete results, though not using the single-time versions of
algorithms as we will here, in Ref. [169].
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Fig. 8. (a) Temporal behavior of all allele frequencies defined as fi[1]. Data recorded every 5 generations. (b) An example of pairwise
correlation changing with time. With finite population size, there exists strong fluctuations in the system. (c) Scatter plot for the reconstructed
against the tested fitness with DCA-nMF (red dots) and DCA-PLM (blue dots) algorithm for Ji j’s. Parameters: the number of loci L = 25, the
number of individuals N = 200, mutation rate µ = 0.01, recombination rate r = 0.1, crossover rate ρ = 0.5, standard deviation of epistatic
fitness σ = 0.002.

In a finite population, statistical genetics as described
above only holds on the average. When following one pop-
ulation in time, fluctuations of order N− 1

2 appear for observ-
ables such as single-locus frequencies and pair-wise loci-loci

correlations. Figures 8(a) and 8(b) show the simulations using
the FFPopSim software for allele frequencies and a specified
pair-wise loci-loci correlations that these fluctuations can in
practice (in simulations) be quite large. Figure 8(c) presents
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the reconstructed fitness by DCA-PLM (blue dots) and DCA-
nMF (red dots) against the tested fitness. Both the methods
exhibit clear trend along the diagonal direction though with
fluctuations.

The inference of fitness is governed by a set of parameters
during the population evolutionary process. The illustrated
examples in simulation below contain some fixed parameters,
which are the number of loci L = 25, the number of individu-
als N = 500 (to avoid the singularity of correlation matrices of
single generation), the length of generations T = 500×5, the
crossover rate ρ = 0.5. The varied parameters are the mutation
rate µ , the recombination rate r and the strength of fitness σ .
In the following we discuss what one can observe by system-
atically varying these three parameters.

Furthermore, it is of interest to see how the KNS infer-
ence theory performs by averaging the results from singletime
data. This means that we infer parameters from snapshots,
and then average those inferred parameters over the time of
the snapshot. The authors of Ref. [169] in contrast studied the
inference using alltime versions of the data, where inference
was performed only once. In Fig. 9, we show the phase di-
agrams of epistatic fitness inference. The color indicates the
relative root-mean-square error of the fitness reconstruction,
where lighter color means larger error. However, the mean
square error ε as shown in Eq. (47) is used for consistence
in the following scatter plots. Figure 9(a) shows the mutation
rate µ versus the recombination rate r. Figure 9(b) shows the
fitness strength σ versus r. Both of them have wide broad

ranges of parameters where the KNS theory works well for
the fitness recovery. The inference phase diagrams based on
sigletime here are quite close to those presented in Ref. [47]
using alltime.

0.02

0.04

0.06

0.08

0.10

0.6

0.7

0.8

0.9

1.0

2

4

6

8

10

0.6

0.7

0.8

0.9

1.0

0 0.2 0.4 0.6 0.8 1.0

r

µ
σ
(f
)

(b)

(a)

Τ10-3

0 0.2 0.4 0.6 0.8 1.0

r

Fig. 9. Phase diagram for epistatic fitness recovery with DCA-nMF
Ji j’s from the average of singletime data. (a) Mutation rate µ versus re-
combination rate r. For large recombination while low mutation, KNS
inference does not work. However, for small r, the KNS inference the-
ory does not satisfied. (b) Epistatic fitness strength σ with r. For large
recombination and very small fitness, KNS inference does not work.

ε=6.61Τ10-6ε=3.99Τ10-6ε=6.66Τ10-60.010

0.010

0.005

-0.005

-0.010

-0.010

0

0
fij
true

0.010-0.010 0
fij
true

f
ijr
e
c
.

(a) (b)

(c)
0.010

0.005

-0.005

-0.010

0

f
ijr
e
c
.

0.010-0.010 0
fij
true

0.010

0.005

-0.005

-0.010

0

f
ijr
e
c
.

Fig. 10. Scatter-plots of inferred epistatic fitness against the true fitness based on the averaged results from singletime: (a) with sad face:
r = 0.1, where the KNS theory cannot be satisfied here, (b) with smiling face: r = 0.5, where inference works, (c) with not-that-sad face:
r = 0.9, where the KNS theory works but with very heavy fluctuations. Here the DCA-nMF algorithm for Ji j’s is utilized.

0.010-0.010 0
fij
true

0.010-0.010 0
fij
true

0.010-0.010 0
fij
true

0.010

0.005

-0.005

-0.010

0

f
ijr
e
c
.

0.010

0.005

-0.005

-0.010

0

f
ijr
e
c
.

0.010

0.005

-0.005

-0.010

0

f
ijr
e
c
.

ε=6.64Τ10-6(a) ε=4.01Τ10-6(b) ε=6.58Τ10-6

(c)

Fig. 11. Corresponding scatter plots by alltime averages with Fig. 10. The DCA-nMF algorithm for Ji j’s is also used here. The parameters for
each sub-panel are the same as those in Fig. 10.

080201-19



Chin. Phys. B Vol. 29, No. 8 (2020) 080201

When mutation rates are very low, the frequencies of most
loci is frozen to 0 or 1 for most of the time. This is a classical
fact for evolution of one single locus, as discussed above, but
also holds more generally. For an evolving population sim-
ulated with the FFPopSim software it was demonstrated in
Ref. [169]. In this regime fitness recovery is hence impossible
as there is not enough variation. On the other hand, the KNS
inference theory does not hold for high enough µ , as one of
the assumptions is that recombination is a faster process than
mutations. Thus, three points on the µ–r phase diagram are
picked with the same µ and differing r’s, marked as sad face,
smiling face and not-that-sad face, respectively. The corre-
sponding scatter plots are presented in Fig. 10. As is expected,
KNS inference works but with very heavy fluctuations for very
high r, whereas does not hold for low r.

To see if there are differences between the inference with
average over singletime and alltime, the corresponding scatter
plots of Fig. 10 (singletime) are presented in Fig. 11 (alltime).
With the parameters illustrated here, the difference between
the two approaches is small.

6. Discussion and perspectives
Inverse Ising/Potts or DCA has emerged as a powerful

paradigm of biological data analysis which has helped to rev-
olutionize protein structure prediction. For the first time it has
been shown to be possible to predict protein structure from
sequence, though crucially from many similar sequences, not
from a single one. The central idea which has made this pos-
sible is to exploit statistical dependencies encoded by a pos-
tulated Gibbs distribution (1) of the Ising/Potts form over se-
quence space. While DCA recently has been overtaken by
more complex AI learning methods of the deep learning type,
it remains the case that it was the success of DCA that showed
this to be possible. Many other applications have appeared,
some of them in areas where AI learning methods are not
likely to succeed due to lack of training examples.

In this review we have striven to put these developments
in the context of statistical physics. On some level a distribu-
tion over sequences must be arrived at by a evolutionary pro-
cess, which, though it may be complicated, shares aspects of
non-equilibrium spin dynamics. Indeed, these analogies have
been noted for a long time, and have been explored from both
the viewpoint of (theoretical) population genetics, and statis-
tical physics. We have here added the dimension of learning,
how knowledge of the type of dynamics and inference tech-
niques can be used together to deduce biological parameters
from data. We have also considered more direct applications
of kinetic Ising models to model the evolution of neurons and
of economic data, and how to infer connections from such
data.

The main conclusions are as follows. First, we have
stressed that dynamics that does not fulfill detailed balance
can have practically arbitrarily complicated stationary states,
even if interactions is only pair-wise. It can therefore not be
the case that inverse Ising/Potts can generally give useful in-
formation: in the wrong parameter phase it is instead much
more likely to yield garbage. The simplest example is infer-
ence in asynchronous kinetic Ising models discussed in Sec-
tion 3: those models contain parameters (the anti-symmetric
combination Ji j − J ji) that are not simply present in the Ising
distribution (1). DCA, by whichever algorithm, therefore will
never be able to find them. Even more, the stationary distribu-
tion in such models is quite different from Eq. (1), and DCA is
also not able to find the symmetric combination Ji j +J ji either
(unless the anti-symmetric combination is relatively small).
On the other hand, straight-forward methods relying on in-
ference from time series are able to recover symmetric and
anti-symmetric combinations equally easy. The moral of this
part of our review is simple: if you have time series data, you
should use it to infer dynamic models; it is both a more general
and an easier procedure.

Second, we have considered evolutionary dynamics in fi-
nite populations under selection, mutations and recombina-
tion. Following the pioneering work of Kimura and more
recently Neher and Shraiman, we discussed how the high-
recombination regime leads to a distribution of the type (1),
where the parameters can be inferred by DCA. We have noted
that in the same high-recombination regime the effective in-
teraction parameters are small, which corresponds to the high-
temperature regime in inverse Ising. Hence inference in the
high-recombination regime is limited by finite sample noise.
Given finite data inference therefore works best in an interme-
diate regime, not too high recombination (because then statis-
tical co-variance will be too weak), and not too low recom-
bination (because then the Kimura–Neher–Shraiman theory
does not apply). Crucially, we have observed that though the
parameters inferred by DCA on such data are related to fitness,
they are not the fitness parameters governing the evolutionary
dynamics itself. The relation is albeit a simple proportionality,
at least for pairs of loci far enough apart on the genome, but
it is not an identity. The moral of this part of our review is
thus: if you have a theory connecting the underlying mecha-
nism which you want to clarify to the data which you can use,
then you should be well advised to analyze the data using that
theory.

Many open questions remain in the field of DCA, out of
which we will but discuss some that are closely connected
to the main thrust of our argument. The Kimura–Neher–
Shraiman (KNS) theory is a huge step forward to an under-
standing of what is actually inferred for such a procedure, but
is obviously only a first step. Most directly, both Figs. 10(a)
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and 11(a) strongly suggest a functional relationship. These
plots were obtained in parameter regions where the KNS the-
ory cannot be expected to be valid, and indeed it is not: the
mean square error of inferred and underlying fitness parame-
ters is large. Since the plots suggest a functional relationship,
there should however be another theory, which at this point
is unknown. In other words, KNS is not the end, but should
be the starting point for developing theories connecting fitness
(and other evolutionary parameters) to distributions over se-
quences in much wider settings, and ways to learn such pa-
rameters from sequence data. In particular, since the KNS the-
ory is only valid when fitness parameters fi j are smaller than
compounded recombination parameters rci j, KNS is likely not
valid for the very strongest epistatic effects which are poten-
tially the most interesting and biologically relevant.

Much work further deserves to be performed to incorpo-
rate further biological realism in KNS and/or its successor the-
ories and software. Among the many important effects (most
discussed above) which have not been taken into account in
this review we list:

Multi-allele loci
Realistic mutation matrices that vary over a genome and

depending on the transitions
Mutations that do not act on single loci, i.e., insertions

and deletions (indels)
Other models of fitness and other distributions of, e.g.,

pair-wise parameters fi j

More realistic models of recombination incorporating
also recombination hotspots

More types of recombination, as appropriate for bacterial
evolution

Effects of population growth and bottle-necks.
Many kinds of simulation software has been developed

in the computational biology community, for instance, the
fwdpp[170] software suitably used recently in Ref. [171]. To
objective would not be to redo or replace such software pack-
ages, but to reuse them in the context of theory-driven infer-
ence.

One further direction important to pursue is the effect of
spatial and environmental separation, believed to be a main
mechanism behind speciation and the emergence of biologi-
cal variation in general. Its effects in models of the Wright–
Fisher–Moran type were emphasized in Ref. [144]. Spatial
separation would in general tend to counter-act recombina-
tion, in that individuals which could recombine if they would
meet actually are not likely to meet. For instance, a bacterium
with one of highest known recombination rates is the human
pathogen Helicobacter pylori (the cause of stomach ulcers),
but two such bacteria actually can only recombine when they
find themselves in the stomach of the same host. Strains of
H. pylori can thus be distinguished on a global scale, and only

merge when their human host populations overlap.[172]
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[1] Mézard M, Parisi G and Virasoro M A 1987 Spin Glass Theory and

beyond: An Introduction to the Replica Method and Its Applications
(Singapore: World Scientific)

[2] Fischer K and Hertz J A 1991 Spin Glasses (Cambridge: Cambridge
University Press)
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